The supporting set and the fuzzy set to be determined are used to describe the distribution of data set. 使用支撑集和模糊待分集的概念来描述数据集的分布。
A New Fuzzy Clustering Algorithm of Categorical Data Set Based on the Kernel Method 基于核方法的分类型属性数据集模糊聚类算法
First of all, this paper investigates research status of fuzzy relational database and properties of vague set, and then puts forward a generalized fuzzy relational data model on vague set ( VGFRDM) and a fuzzy database structured query language on vague set ( VFSQL). 本文首先探讨了模糊关系数据库的研究现状和Vague集的性质,然后提出了基于Vague集的广义模糊关系数据模型VGFRDM和基于Vague集的模糊数据库查询语言VFSQL。
Based on fuzzy set theory, the multi-sensor data amalgamation adopted fuzzy set theory to deal with data. 基于模糊集理论的多传感器数据融合,应用模糊集理论处理数据。
Fuzzy data fusion based on Vague set 基于Vague集的模糊信息融合研究
This paper puts forward a Generalized Fuzzy Relational Data Model Based on Vague Set ( VGFRDM) of fuzzy relational database, which is built on the existing fuzzy relational data model. 该文在已有的模糊关系数据模型的基础上,提出了模糊关系数据库的一种基于Vague集的广义模糊关系数据模型VGFRDM。
According to the membership function based on the Mahalanobis distance, the equations of fuzzy eigenvalue were presented. P-S-N curves of tubular joints were established based on the analysis of a typical fatigue data set of joints with fuzzy statistical method. 基于马氏距离的隶属函数,给出了模糊统计特征值的计算公式,采用模糊统计方法对海洋平台管节点疲劳试验的结果进行统计分析,建立了P-S-N曲线。
With the combination of rough set theory and hierarchical clustering method, this paper blurs the original data using fuzzy conceptual hierarchy method, eliminates the interference effect of marginal data, reduces the constitution of discernibility matrix and gets the core attribute set. 该文在结合粗糙集理论和层次聚类方法的基础上,提出运用模糊概念层方法对原始数据进行模糊化处理,排除边缘数据的干扰作用并简化可区分矩阵的构造,从而得出核属性集。
The fuzzy C-means clustering ( FCM) algorithm requires a long time to segment images, especially medical images, due to processing the large data set. 为解决模糊C-均值聚类(FCM)算法在图像分割尤其是医学图像分割中存在的计算量大、运行时间过长的问题,提出了一种改进方法。
Fuzzy rough set theory is an effective tool for reduction of data dimension, but there are few dimension reduction algorithms that are based on fuzzy rough set theory so far. 模糊粗糙集理论是解决数据集维数问题的有效工具,但基于模糊粗糙集的降维算法还不多。
A whole set of fuzzy control rules by analysing the actual data knowledge base have been set up. 通过对实际数据的分析,获得了完整的模糊控制规则集。
The learning machines combine FSVMs with the theory of fuzzy set, extract some data from the entire training data to form the reduced training set, and then construct the FSVM on the reduced training set. 这类学习机将FSVMs与模糊理论相结合,提取训练集中的少部分样本,形成少训练样本集,构造基于这种少训练样本集上的FSVMs。
A fuzzy support vector classifier ( F-SVC) algorithm is used to pretreat the input data set and obtain the fuzzy memberships. 用模糊支持向量分类算法(FSVC)对输入数据进行预处理,得到多模型模糊隶属度;
A fuzzy K-Modes clustering algorithm based on the attributes weighted is presented for the different contribution of each attribute of the data set to the clustering. 提出了一种基于属性加权的模糊kmodes算法。
Comparative experiments show that the proposed method is more effective than two current methods. ( 3) Different fuzzy clustering method often produces different fuzzy partitions over the same data set and no one always performs well in any cases. 当数据集合的聚类数已知时,不同的模糊聚类算法在同一个数据集合上常常产生不同的模糊聚类,而且,没有哪一个模糊聚类方法在任何情况下总能产生较好的聚类结果。
The thesis details runout table cooling process and fuzzy control theory, and proposes runout table cooling process fuzzy control system of master-slave structure. Through the real data analysis the fuzzy control rule set is obtained. 本文详细的介绍了热轧带钢轧后冷却的工艺过程和模糊控制理论的基础,提出了热轧冷却过程主从结构的模糊控制系统,通过对实际数据的分析,获得了模糊控制规则集。
The character of SVM in extracting support vector provides a mechanism to extract fuzzy IF – THEN rules from the training data set. 支持向量机抽取支持向量的特点提供了从训练数据产生模糊规则的机制。
The paper completes the following three issues based on Agglomerative Fuzzy K-means: ( 1) The clustering problem of data set with multilevel-density clusters ( clusters with different density and hierarchical structures between them). 本文基于该算法,对以下三个方面问题的做了研究:(1)多级密度数据(不同密度且具有层级结构簇数据)的聚类问题。
It is entirely different from the methods of traditional medical statistics and fuzzy comprehensive evaluation method. The rough set theory not remains on the surface of data and it can be used to dig up the depth information in the data set. 这完全不同于传统的医学统计方法和模糊综合评价方法,这是因为利用粗糙集理论能够挖掘到数据内部深层的知识,而不是停留在数据表面。